Design and Implementation
of the
RWM Window Manager

Paul H. Eissen

ABSTRACT

RWM is a menu-driven window manager for Version 11 of the X Window
System. RWM manages the size and placement of overlapping client windows,
provides consistent client window decoration in the form of borders and
titlebars, controls the redirection of mouse and keyboard input, and handles the
placement and content of icons. This paper describes the design and imple-
mentation of RWM in light of: influences from other X window managers and
other windowing systems; problems implementing X window managers in the C
programming language; immature client-to-window manager communication
conventions; the lack of symmetry in the X Protocol; and the policy-free nature
of the X Window System.

@ Category: Applications of Computer Systems

September 23, 1988

Lawer Iconify CircU CircDn FPause Continue | New xterm Focus

xclock

eady and printing
Ohiner Job Files

S lactive eissen 27 standard input

onadl# event = Expose S L Clear ALl

sert A1

Bitmap Editor

coronadl# xdpr edsfsdfsdf
lpr: 1n03: unknown printer

inbox

drafts

[Elc«se “tompnsel en in New H[.reate HDelﬁtel

ready and printing

Owner Job Files
active eissen 28 standard input
oronadd# event = Expose

coronadd#

clients corona, dump
usr

L
Ielete || M IUnmarL ”‘v‘ieuﬂ Neu“Fﬂeply”Fov‘ward ”Use as Comp

!Ffeacan I]

Pre-release version 0.127

Design and Implementation
of the
RWM Window Manager

Paul H. Eissen

ABSTRACT

RWM is a menu-driven window manager for Version 11 of the X Window
System. RWM manages the size and placement of overlapping client windows,
provides consistent client window decoration in the form of borders and
titlebars, controls the redirection of mouse and keyboard input, and handles the
placement and content of icons. This paper describes the design and imple-
mentation of RWM in light of: influences from other X window managers and
other windowing systems; problems implementing X window managers in the C
programming language; immature client-to-window manager communication
conventions; the lack of symmetry in the X Protocol; and the policy-free nature
of the X Window System.

1. Introduction

Windowing systems come in many flavors. Some environments, including Andrew [], Blit
[1, Cedar [], Macintosh [], SunView [], and Windows [], merge low-level graphics and device
operations with higher-level window and input management. In contrast, the X Window Sys-
tem! leaves the construction of the user and management interfaces to the (adventurous) pro-
grammer.

This paper describes the design and implementation of RWM?2, a menu-driven window
manager for Version 11 of the X Window System. The remainder of the paper is divided as
follows: Section Two presents a brief overview of the X Window System; Section Three
discusses characteristics of window managers common to both X and rival windowing systems;
Section Four presents RWM design decisions and a tour through the implementation; and Sec-
tion Five discusses of problems encountered during the design and implementation of RWM.

2. The X Window System

The architecture of X Window System (‘“X”’ for short) is based on the client-server model.
[XWS] A server is a user-level process that controls a single bit-mapped display and accepts
requests from, and sends input to, client applications. The server communicates with clients via
a reliable, 8-bit duplex stream in which a simple block stream protocol, called the X Protocol
[XP], is layered on top of the byte stream [XWS]. The X Protocol not only defines the base
window system the server is expected to implement, but also describes how clients and servers
communicate with each other. (Throughout the rest of this paper, ‘X Protocol’” and ““X”* will
be used interchan geably.)

1. The X Window System is a trademark of the Massachusetts Institute of Technology.
2. RWM does not stand for Real Window Manager.

=

Clients and servers communicate via requests, replies, events, and errors [XP]. A request
is a command for the server to perform an operation on behalf of a client. Some requests gen-
erate one or more replies, in which the server synchronously sends information back to the
client. A server sends information generated asynchronously to clients via events. An event
can be generated from devices (e.g., mouse movement, key press) or as a side-effect of a
client’s request. An error is a special event generated when the server detects a problem(s) in a
client’s request.

Servers create and maintain resources on behalf of clients. X resources include windows,
pixmaps, cursors, fonts, graphics contexts, and color maps. Resources are destroyed by client
requests or automatically at connection close. [Xlib]

The design of X explicitly separates high-level management functions from the low-level
graphics operations in the base window system. By stressing mechanism rather than policy
[XWS], X allows many different application and window management interfaces to be built on
top of the base window system.

The X Protocol defines a ‘‘window manager’’ to be a client that manipulates windows,
implements most of the user interface policy, and controls the keyboard input. The X Protocol
limits the number of window manager clients communicating with a server at any point in time
to one.

X defines an arbitrarily branching hierarchy of overlapping rectangular windows [XWS].
Every window, with the exception of the root window, has exactly one parent. X allows win-
dows to be reparented to other windows. A ‘‘top-level’’ or ‘‘client’’ window is a window whose
parent is the root window. Client applications create and maintain the contents of client win-
dows; window manager clients restack, resize, and reposition them [XWS].

A property is a collection of named typed data. [Xlib] A client can send ‘‘hints’’ to a win-
dow manager by storing properties on its top-level window(s). A window manager in turn may
process selected properties and ignore the rest. The X Protocol defines a set of properties but
does not impose semantics.

3. Characteristics of Window Managers

The majority of window managers for bitmapped displays, regardless of method of con-
struction, functional description, or position in the system architecture, share certain charac-
teristics. These include window decoration, window manager functions, function selection
styles, window layout policies, icon support, and keyboard input management.

Window Decoration

Many window managers add ‘‘decoration’’ to application windows. The WM [], DXWM
[1, and Andrew [] window managers, for instance, place a title bar above every client window.
(Title bars normally run the entire length of the window). Title bars are used by window
managers to display temporal and permanent information, including names and/or symbols for
applications, files, hosts, menus, actions, etc.

Window managers may also add decoration in the form of borders. Macintosh [] and Win-
dows [] incorporate scrollbars into their window borders. Scrollbars allow a user to view the
hidden regions of a window’s contents. Other window managers simply fill in borders with
solid colors.

A few window managers, like UWM [], avoid window decoration completely, leaving it up
to the application.

Window Manager Functions

Window manager functions fall into two categories: those which manipulate application
windows, and those that do not. Functions exist to move, resize, select, raise, lower, circulate,
iconify, de-iconify, shrink, grow, refresh, assign the keyboard to, and destroy an application
window. Non-window operations include refreshing and retiling the screen, and exiting from

¥

the window manager. User interface policy dictates the set of operations supported by window
managers.

Function Selection Styles

Users communicate their orders to window managers through a variety of interfaces.
Function selection styles include static menus, popup menus, title bars, and special mouse-key
combinations. The XNWM [] window manager draws a static menu across the top of the
screen and waits for the user to ‘‘click’’ the mouse in the menu window containing the name of
the operation to be selected. UWM, in contrast, displays a popup menu containing a list of
function names only when the user clicks the mouse in the root window: the menu is invisible
otherwise.

Many window managers represent operations as symbols in title bars: to move an applica-
tion window with WM, for instance, a user clicks on the ‘‘move’’ symbol in the window’s title
bar and drags a “‘bounding box’’ of the window until satisfied with the new location. Window
managers may also include menus in their title bars.

Special mouse-key combinations in certain contexts can be used to communicate choices
to window managers in lieu of more cumbersome methods. A unique combination of mouse
clicks and key presses, for instance, may substitute for the selection of a certain menu opera-
tion. This method can provide for a range of interfaces in the same window manager to satisfy
both “‘novice’’ and ‘‘expert’’ users. [XWS] [Tiet]

Window Layout Policies

Window managers are either manual or automatic. [XWS] Manual window managers over-
ride very few user actions concerning the placement, sizing, and stacking of client windows.
Automatic window managers, on the other hand, operate with little or no human interaction.

Window layout algorithms generally fall into one of two categories: overlapping or tiling.
[Teit] Overlapping window managers implement the so-called ‘‘desktop’’ metaphor, in which
windows can stack on top of and obscure other windows. Tiling window managers allow no
overlapping by placing windows adjacent to other windows. Some tiling window managers fill
the entire screen with windows while others allow blank space to exist. Examples of tiling
managers include RTL [], Andrew, Cedar, and Windows.

Generally, overlapping window managers are manual, while tiling window managers are
automatic. It is possible, however, for an overlapping window manager to incorporate
automatic operations and for a tiling window manager to accept user input.

Icon Support

Icons are small graphical symbols representing actions, states, windows, and other objects
of interest in the user interface. The Macintosh, for example, uses icons to represent such con-
cepts as “‘the system is busy and you must wait’’ [HFactor]. A user of the SunView environ-
ment can reclaim screen real-estate by ‘‘closing’’ a window and replacing it with a smaller icon.
[SSI] The Andrew window manager simulates the use of icons by ‘‘shrinking’ an application
window to its title bar [].

Many window managers restrict icon placement. Both Windows and Cedar, for instance,
reserve the bottom of the screen for icons. An interesting variation on this theme is the “‘icon
box’’ window used by DXWM to store icons []. At the opposite extreme, UWM maintains a
laissez faire attitute toward icon placement.

Keyboard Input Management

Many window managers are responsible for the management of keyboard input. (in X,
this is referred to as ‘“‘setting the input focus’’.) The two basic models for keyboard manage-
ment are real-estate and listener. [XWS] A real-estate window manager directs keystrokes to the
application whose window currently holds the mouse. A listener window manager forces a user

ol

to “‘select’’ a window (via a mouse click, perhaps) before directing keystokes to the window. A
handful of window managers support both models. UWM is capable of switching between
real-estate and listener modes at the direction of the user.

4. RWM Design and Implementation

To the software engineer, design is the bridge between software requirements and an
implementation that satisfies those requirements. [RF] Ideally, the design process should
specify the structure of a software system independent of the programming language. In
theory, it is possible to design an X client using only the X Protocol as a guide; in practice, pro-
gramming interfaces to the X Protocol permit a programmer to ‘‘intertwine’’ the design and
implementation phases to facilitate the rapid creation of prototypes.

Although an initial requirements list [] was generated at the beginning of the development
cycle, RWM is actually the result of countless prototypes. For this reason, both the design
decisions and the implementation details are presented together in this section.

A List of Requirements

Several of these requirements are documented in []; many were formulated as a result of
prototype evaluation.

. A static “Menu’’ window shall be painted at the top of the screen. The Menu shall be
completely unobscured at all times. Menu operations shall be selected with the mouse.

. RWM shall operate on the set of client windows.

° Client windows shall be decorated with ‘‘Frame’ windows, ‘‘TitleBar’’ windows, and
borders.

. RWM shall associate an ‘‘Icon’’ window with every client window and maintain the set of
Icons.

. All Icons shall be kept in the ‘‘IconBox’’ window. RWM shall unmap the IconBox when
the last Icon is unmapped and map it along with the first mapped Icon. When mapped,
the IconBox shall be painted at the bottom of the screen and kept completely unobscured
and static. Icons shall be selected with the mouse.

. The selection of an Icon with the mouse shall unmap the Icon and map its client window.

° For consistency of appearance, the Menu, the IconBox, and TitleBars shall use the same
font.

. RWM shall support both real-estate and listener models of keyboard management (input
focus).

° RWM shall support overlapping client windows.

o The user shall be allowed to manipulate client windows at will, subject to constraints
placed on these windows by the applications themselves. In other words, RWM shall emu-
late manual window management with respect to the set of client windows.

. RWM shall emulate automatic window management with respect to the Menu, the Icon-
Box, and the Icons.

. RWM shall honor the following client ‘‘hints’’: client window name; client window size
and location; icon name; transient state; maximum, minimum, and incremental client
window sizes; client window state; and input focus model.

. RWM shall implement the following ‘‘selection’’ Menu operations:
° Move - select a client window and move it to a new location.
. R esize - select a client window and resize it.
° R aise - select a client window and raise it above all other siblings.
® Lower - select a client window and lower it below all other siblings.

s

o Iconify - select a client window, unmap it, and map its Icon into the IconBox.

. Focus - select a client window and direct all subsequent keyboard input to it (listener
mode), or select the root window or Menu and reset RWM to real-estate mode.

. RWM will implement the following ‘‘non-selection’’ Menu operations:
. Circulate Up - raise all client windows obscured by siblings.
® Circulate Down - lower all client windows that obscure siblings.
e Pause - stop all output to the screen; used with Continue.
. Continue - release the screen; used with Pause.
. R efresh - send exposure events to all client applications.
. Quit - perform a graceful exit.

Programming Details

Xlib [], a C [] subroutine library, is the best-known and most-robust X Protocol program-
ming interface. For ease of binding with Xlib, RWM was implemented in C.

Abstraction Models

The use of procedure and data abstraction [RF] simplified the design and subsequent
debugging of RWM. Procedure abstraction was used to divide the high-level structure of RWM
into three “packages”3: Menu and functions, Frames and TitleBars, and IconBox and Icons.
Although numerous prototypes were created, RWM’s basic three-package structure never
changed.

As the design progressed, it became apparent that some kind of ‘‘list”’ was needed by
RWM to keep track of three sets of state information: client windows, Frames, and TitleBars;
client windows and Icons; and currently-mapped Icons. A utility package containing a generic
C-language doubly-linked-list abstract data type [SRC] was created.* The Frame and Icon pack-
ages made use of this package so as to separate information processing from storage and
retrieval details and in turn simplified their own implementations.

RWM As Client

In X, a window manager, however specialized, is just another client. An Xlib client is
divided into initialization and event handling [HW] [Jones].

5. Problems

The design and implementation of RWM was not without problems. While some of
RWM’s flaws can no doubt be attributed to the author’s inexperience, asymmetry in the X Pro-
tocol, the policy-free nature of X, and programming with C and Xlib complicated the develop-
ment of RWM.

3. A C package is nothing more than a pair of files: the ‘“.h”’ file contains function declarations, and the “‘.c”’
file contains function and static variable definitions.

4. This C-based abstract data type is a reseach topic unto itself and any discussion of it is regrettably beyond
the scope of this paper.

g

Asymmetry in the X Protocol
In the ‘“Commentary on X Version 11 Design’’ [], Gettys noted that

A window manager... interested in controlling placement of subwindows... can select
structure redirect control. Whenever there is an attempt to map, unmap, destroy,
reposition, resize, [or] alter [the] border of a (sub)window the selecting client will
be notified, and the operation ignored. A window manager can then perform the
operation on behalf of the clients.

In reality, the X Protocol lets a window manager ‘‘steal’’ MapWindow, ConfigureWindow, and
CirculateWindow requests from other clients but does not provide for the redirection of
UnmapWindow and DestroyWindow requests. This asymmetry in the design of the X Protocol
forces a window manager to react to the unmapping and destruction of client windows after the
fact. While a well-behaved window manager, if given the chance to capture UnmapWindow and
DestroyWindow requests, will simply pass the requests unchanged, the ability to capture all
window ‘‘change of state’’ requests from other clients makes for a cleaner and more flexible
window manager design.

Since it intercepts MapWindow requests, RWM does not have to distinguish between
MapNotify events generated from its own MapWindow requests and those generated by
requests from other clients; in fact, RWM ignores all MapNotify events.

On the other hand, when a client issues an UnmapWindow request, RWM has to wait for
the server to send the UnmapNotify event. An additional complication is that several of
RWM’s operations issue UnmapWindow requests. Therefore, not only must RWM react to the
unmapping of client windows after the requests have been processed, it has to decide which
UnmapNotify events to ignore (its own) and which to process (clients’). When RWM calls
mapFrame(), the is_mapped field associated with the newly-mapped client window is set to
True; when the window manager calls unmapFrame(), this field is set to False. Therefore, to
determine the originator of an UnmapNotify event, RWM checks the current value of the
is_mapped field:

case UnmapNotify:
if (clientInFrameList(event-> xunmap.window))
{
if (framelsMapped(event-> xunmap.window))

{

unmapFrame(dpy, event-> xunmap.window);
}
}
break;

Unfortunately, this solution contains a flaw: if RWM were modified to receive SubstructureNo-
tify events on the root window, RWM would inadvertently unmap every mapped client window
reparented during the initialization phase. A side effect of reparenting is the implicit unmap-
ping by the server of currently-mapped client windows: when it receives an UnmapNotify
event, RWM will mistakenly conclude another client generated the event and unmap the win-
dow.

The inability to iritercept UnmapWindow requests resulted in unbalanced (and flawed)
UnmapNotify event handling in RWM.

The Policy-Free Nature Of X

policy-free - too many choices, few restrictions, almost no restrictions on clients (since
they should be written w/out ANY window manager in mind), (WM can’t implement true user
interface because clients have control over their contents); anti-social behavior hard to defend

5

against (See XWS, section 3.2 re guessing resource IDs), immature client-window manager
comm. conventions;

The Xlib Programming Interface

C and Xlib, window managers could use object-oriented and message-passing concepts

effectively, C+ + , event-driven (changes in software propagates to other parts, no matter how
hard one tries to separate frame, icon, event handling, etc. code)

6. Conclusions

References

[1] Paul Asente, ‘“‘xnwm - X window system manager process’’, X Window System, Version
10, 1986.

[2] Ellis Cohen, ‘“The Siemens RTL Tiled Window Manager’’, 2nd MIT X Conference Notes,
Jan. 1988.

[3]1 DECWindows User Interface Style Guide, Digital Equipment Corporation, 1988.

[4] Paul Eissen, Requirements for Raoul’'s W indow Manager, Internal Memorandum, 1988.

[51 Richard Fairley, Software Engineering Concepts, McGraw-Hill, 1985.

[6] Hania Gajewska, ‘‘“Window Managers in X11°’, 2nd MIT X Conference Notes, Jan. 1988.

[7] Hania Gajewska and David S. H. Rosenthal, ‘““wm - a simple real-estate-driven window
manager’’, X Window System, Version 11, 1988.

[8] Michael Gancarz, ‘“‘uwm - a window manager for X’’, X Window System, Version 11,
1988.

[9] Jim Gettys, ‘“Commentary on X Version 11 Design’’, X Window System, Version 11,
1986.

[10] Jim Gettys, Ron Newman, and Robert W. Scheifler, ‘‘Xlib - C Language X Interface’’, X
Window System, Version 11, 1988.

[11] Inside Macintosh, Addison-Wesley, 1985.

[12] Oliver Jones, ‘‘Introduction to Programming the X Window System’’, Apollo Computer
Inc., 1987.

[13] Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice-Hall,
1978.

[14] Ed Lee, ‘“Window of Opportunity’’, UNIX Review, Vol. 6, No. 6, June 1988, pp. 47-61.

[15] Microsoft Windows User’s Guide, Microsoft Corporation, 1985.

[16] James H. Morris, Mahadev Satyanarayanan, Michael H. Connor, John H. Howard, David
S. H. Rosenthal, and F. Donelson Smith, ‘‘Andrew: A Distributed Personal Computing
Environment’’, Communications of the ACM, Vol. 29, No. 3, Mar. 1986, pp. 184-201.

[17] Rob Pike, ‘“The Blit: A Multiplexed Graphics Terminal’’, AT &T Bell Laboratories T echni-
cal Journal, Vol. 63, No. 8, Part 2, Oct. 1984, pp.1607-1631.

[18] David S. H. Rosenthal, ““‘A Simple X11 Client Program, or, How hard can it really be to
Write "Hello, World’?”’, USENIX Conference Procceedings, Winter 1988, pp.229-235.

[19] David S. H. Rosenthal, ‘‘Inter-Client Communications Conventions Manual’’, X Window
System, Version 11, Draft, Feb. 25, 1988.

[20] Richard Rubinstein and Harry Hersh, The Human Factor, Digital Press, 1984.

[21] Robert W. Scheifler and Jim Gettys, ‘“The X Window System’’, ACM Transactions on

Graphics, Vol. 5, No. 2, Apr. 1986, pp. 79-109.

[22]

[23]
[24]
[25]
[26]

[27]

= =

Robert W. Scheifler, ‘X Window System Protocol, Version 11°’, X Window System, Ver-
sion 11, Sept. 1987.

Bjarne Stroustrup, The C+ + Programming Language, Addison-Wesley, 1986.
Sun System Introduction, Sun Microsystems, Inc., 1987.
SunView 1 Programmer’s Guide, Sun Microsystems, Inc., 1987.

Warren Teitelman, ‘A Tour Through Cedar’’, IEEE Transactions on Software Engineering,
Vol. SE-11, No. 3, Mar. 1985, pp. 285-302.

Robert A. Zimmermann, ‘‘The C-Programmer’s Toolbox A Set of Packages for C Pro-
grams’’, SRC Technical Report T86081, Semiconductor Research Corporation, June 1986.

