
Encapsulating Xt Callback Functions in C++

Paul Eissen

8 November 1991
∗

1 Introduction

A programmer writing an application in C [1] with
the X Toolkit Intrinsics (Xt) [2] typically structures
the user interface component as set of callback func-
tions. Each callback function is registered via Xt
with an instance of a widget from a widget library.
At runtime, user interaction (such as mouse button
presses in a push button widget) cause the Xt event
dispatcher to invoke registered callback functions. A
callback function may be passed both widget-specific
and application-specific data. Constructing an Xt-
based user interface program in C, then, is an exercise
in deciding on the quantity and types of widgets to
be instantiated, registering callback functions with a
subset of these instances, and associating application-
specific data with callback functions.

Unfortunately, coding Xt-based user interface pro-
grams in C prevents a programmer from mapping
the problem domain directly into an implementation.
The requirements may call for, say, a radio receiver
window, but the programmer must think in terms
of generic widgets and domain-specific callback func-
tions that operate on these widgets. The C++ [3]
class provides a better model for mapping the prob-
lem domain into software. A C++ class for a radio
receiver window can collect both the widget instances
used to construct the actual window and the callback
functions that operate on these instances.

This paper presents a simple technique for encap-
sulating Xt callback functions in C++ classes. An
example C++ class will be described first. Next, the

∗Translated from the original troff and lightly edited on
11 February 2018.

most logical (but incorrect) method for encapsula-
tion is presented. Finally, a technique based on static
member functions is described.

2 An Example Class

Consider a C++ TuneList class that models un un-
bounded list of frequency values. A user can scroll
through the contents of a TuneList window and se-
lect one frequency at a time. A TuneList window
can manage an instance of an OSF/Motif [4] XmList
widget. Here is the preliminary class definition:

#include <Xm/List.h>

class TuneList {

public:

TuneList(const Widget parent,

const char* name);

virtual ~TuneList();

...

protected:

...

private:

Widget listw;

...

};

An XmList widget defines several callback lists on
which to register callback functions. We are in-
terested in “registering” a virtual member function
frequencySelected() on one of these lists. The
most logical place for callback registration is in
TuneList’s constructor:

1



TuneList::TuneList(const Widget parent,

const String name)

{

Arg args[10];

Cardinal n = 0;

XtSetArg(

args[n], XmNselectionPolicy,

XmSINGLE_SELECT); n++;

listw = XmCreateScrolledList(

parent, name, args, n);

XtManageChild(listw);

// Register frequencySelected()?

XtAddCallback(

listw,

XmNsingleSelectionCallback,

... );

}

When the user selects a frequency in a TuneList

window, we want the runtime system to invoke
frequencySelected() and pass it the new value.

3 The Wrong Way

At first glance, encapsulating frequencySelected()

can be accomplished by: (1) coding it as a “regular”
Xt callback function:

void TuneList::frequencySelected(

Widget widget,

XtPointer clientd,

XtPointer calld)

{

// Dereference "calld" to obtain

// the new frequency

}

(2) adding it to TuneList’s protected list of mem-
bers, and (3) registering the function with Xt:

XtAddCallback(listw,

XmNsingleSelectionCallback,

(XtCallbackProc)frequencySelected,

(XtPointer)NULL);

This simple statment contains a serious type viola-
tion. Our class function cannot be cast to

void (*)(Widget, XtPointer, Xtpointer)

(the typedef for XtCallbackProc) because its type is
really

void (TuneList::*)(

Widget, XtPointer, XtPointer)

Why is this a problem?

A pointer to member function for a particu-
lar object may be cast into a pointer to func-
tion, for example, (int(*)())p->f. The re-
sult is a pointer to the function that would
have been called using that member func-
tion for that particular object. Any use of
the resulting pointer is... undefined.1 [3, pp.
631-632]

As a rule, non-static class member functions cannot
be registered as Xt callback functions.

4 The Right Way

It is legal in C++ to pass a static member func-
tion pointer to XtAddCallback() because its type
definition does not include a class name. We can
therefore arrange to have a static member function
realSelectionCB() invoke frequencySelected()

through a pointer to a TuneList object. Since the
former has no this pointer, we must pass it in as
client data:

XtAddCallback(listw,

XmNsingleSelectionCallback,

(XtCallbackProc)realSelectionCB,

(XtPointer)this);

realSelectionCB() then simply “forwards” pseudo-
callback function invocations:

1As proof, two C++ compilers (g++ 1.35.1 and Sun
C++ 2.1) were used to compile the XtAddCallback() state-
ment. In both cases, a segmentation fault occurred when
frequencySelected() tried to dereference its calld parame-
ter.

2



void TuneList::realSelectionCB(Widget,

XtPointer clientd,

XtPointer calld)

{

TuneList* p = (TuneList*)clientd;

p->frequencySelected(calld);

}

frequencySelected(), no longer an Xt callback
function, can throw away the extra parameters:

void TuneList::frequencySelected(

XtPointer calld)

{

// Perform some action on the

// selected value in "calld"

}

The TuneList class now has the following definition:

class TuneList {

public:

TuneList(const Widget parent,

const char* name);

virtual ~TuneList();

...

protected:

virtual void frequencySelected(

XtPointer calld);

...

private:

static void realSelectionCB(

Widget widget,

XtPointer clientd,

XtPointer calld);

Widget listw;

...

};

When the user selects a frequency, Xt will in-
voke realSelectionCB(), which in turn calls
frequencySelected() (in the context of a TuneList
object) to perform some action on the selected value.
Classes derived from TuneList “inherit” this method
of callback invocation. A ShortwaveTuneList

class, for example, may define its own version
of frequencySelected(). This works because
realSelectionCB() is polymorphic.

5 Conclusion

Xt callback functions in C++ are encapsulated as
static class member classes. These callback functions
can in turn call pseudo-callback irtual functions that
do the real work. A derived class need not know
(nor care) how its base class interacts with Xt. With
C++ (and a little ingenuity), callback functions can
be collected, protected, and inherited with ease.

References

[1] Brian W. Kernighan and Dennis M. Ritchie. The
C Programming Language, volume 2nd ed. Pren-
tice Hall, Englewood Cliffs, NJ, 1988.

[2] Paul J. Asente and Ralph R. Swick. X Win-
dow System Toolkit: The Complete Programmer’s
Guide and Specification. Digital Press, Bedford,
MA, 1990.

[3] Bjarne Stroustrup. The C++ Programming Lan-
guage, volume 2nd ed. Addison-Wesley, Reading,
MA, 1991.

[4] Open Software Foundation. OSF/Motif Program-
mer’s Reference, Revision 1.1. 1991.

3


